Se connecter
Intranet
Thème

Présentation

Mechanobiology concerns the role of force in development, physiology, and diseases 1,2. Our team focuses on the molecular mechanisms by which cells sense and respond to mechanical signals. Some cells in the body are specialized for sensing a specific type of mechanical input: for instance touch sensitive sensory dorsal root ganglion neurons or hair cells in the inner ear. However, all cells of the organism (even non-specialized cells) are mechanosensitive (MS) and can respond to mechanical stress by adaptive responses. A variety of molecular players are involved in cellular mechanotransduction including: the extracellular matrix, adhesion molecules, ion channels,  cytoskeletal elements, nuclear proteins, transcription factors, enzymes, as well as numerous other molecular structures and signaling molecules. It is now well recognized that changes in cellular mechanotransduction significantly contribute to the development of severe pathologies, including atherosclerosis, hypertension, heart failure and cancer. Notably, mechanotherapy is being progressively introduced for clinical use, as for instance in reconstructive medicine.

Collectively cells respond to local mechanical stress by activation of specific molecular pathways resulting in macroscopic changes at the organ level. For instance resistance arteries (small diameter) respond to hypertension by a major structural remodeling caused by the repositioning of arterial smooth muscle cells around a smaller lumen diameter (inward eutrophic remodeling). Hypertensive arterial remodeling allows a normalization of the parietal tension because of an increase in wall thickness (although without hypertrophy) and a reduced arterial diameter. Thus, wall tension is restored to a normal level, despite an increase in luminal pressure [Laplace’s law]. We aim at identifying the sensors and effectors that are involved in these specific adaptive responses to chronic mechanical stress [although these can become maladaptive when hypertension is maintained]3,4.

Our group has been focusing on the role of ion channels in cellular mechanotransduction for the last 20 years. MS ion channels (i.e. gated by force) are conserved throughout evolution and are already present in microbes, yeast and plants. For instance, osmotic down-shock opens bacterial MS ion channels, such as the large non-selective conductance MscL, allowing osmolyte efflux, relieving pressure and preventing cell lysis 5. Additional studies performed on bacterial MS channels have provided strong evidence that its conformation is directly dependent on tension in the lipid bilayer (for review 6). Our team members discovered, for the first time, the molecular identity of a mammalian MS ion channel 7 (and for review 8). We reported that the K2P channel TREK-1 is a MS K+-selective ion channels, directly activated by force generated in the lipid bilayer, as confirmed by more recent structural data and reconstitution experiments 7-30. Opening of TREK/TRAAK channels in response to mechanical stress (shear stress, membrane stretch or cell swelling) causes cell hyperpolarization leading to a decrease in cell excitability (for review 8).

The identity of the non-selective depolarizing MS cationic channels was discovered in 2010 by the Patapoutian group 31. Piezo1 is a large trimeric complex, with an N-terminal mechanotransduction module followed by a C-terminal ionic pore 32,33. Functional reconstitution experiments with purified Piezo1, as well as electrophysiological recordings indicate that membrane tension is the common activating force acting on Piezo1 gating 34-37. Piezo1 was shown by our group and others to be required for vascular development, flow-mediated dilatation and arterial remodelling 4,38-40, while Piezo2 plays a key role in mechanosensory transduction, in particular light touch sensitivity and proprioception 41-45.

Notably, Piezo1/2 are implicated in a variety of rare genetic disorders, including xerocytosis (dominant Piezo1 gain-of-function mutations; GOF), lymphatic dysplasia (recessive Piezo1 loss-of-function mutations; LOF), arthrogryposis (dominant Piezo2 GOF) and muscular atrophy with scoliosis and perinatal respiratory distress (recessive Piezo2 LOF)46.

We are currently focusing on four different projects concerning the role of Piezo1 in: 1) obesity; 2) hypertension; 3) atherosclerosis; 4) genetic resistance to malaria.

Expected global outcomes:

Our project is intrinsically pluridisciplinary and aggregates state-of-the-art biophysics, molecular and cellular biology, stem cells research, physiology and bio-engineering. This rationalized and integrated collection of experimental data should allow us to gain important new insights into the basic mechanisms of mechanobiology. We expect that our findings will pave the way for the discovery and development of new strategies, based on the pharmacological and/or mechanical modulation of force-gated ion channels, including Piezo1 (mechanotherapy).

External collaborators:

Serge ADNOT, Institut Mondor de Recherche Biomédicale, Créteil (France)

Ez-Zoubir AMRI, Institut de Biologie Valrose, Unica, Nice (France)

Fenja KNOPP, The University of Giessen (Germany)

Aziz MOQRICH, Institut de Biologie du Développement de Marseille (France)

Stefan OFFERMANNS, Max Planck Institute for Heart and Lung Research, Bad Nauheim (Germany)

Eileen PARKES, Matthew JACKSON and John CHRISTIANSON, University of Oxford (UK)

Ardem PATAPOUTIAN, The Scripps Research Institute, La Jolla, CA (USA)

Mario PENDE, Institut Imagine, Paris (France)

Jean-François TANTI, Laurent YVAN-CHARVET and Patrick AUBERGER, C3M Inserm, Unica, Nice (France)

Kai WENGELNIK, Dynamique des Interactions Membranaires Normales et Pathologiques, Montpellier (France)

Aimin XU, Yu WANG and Leo POON, The University of Hong Kong (China)

Publications

2025
Glogowska E, Jose GP, Dias Araújo AR, Arhatte M, Divita R, Borowczyk C, Barouillet T, Wang B, Brau F, Peyronnet R, Patel A, Mesmin B, Harayama T, Antonny B, Xu A, Yvan-Charvet L, Honoré E, Potentiation of macrophage Piezo1 by atherogenic 7-ketocholesterol., Cell Rep 2025 Apr; 44(4): 115542.
2025
Knoepp F, Abid S, Houssaini A, Lipskaia L, Gökyildirim MY, Born E, Marcos E, Arhatte M, Glogowska E, Vienney N, Günther A, Kraut S, Breitenborn-Mueller I, Quanz K, Fenner-Nau D, Derumeaux G, Weissmann N, Honoré E, Adnot S, Piezo1 in PASMCs: Critical for Hypoxia-Induced Pulmonary Hypertension Development., Circ Res 2025 Apr; (): .
2023
Lohia R, Allegrini B, Berry L, Guizouarn H, Cerdan R, Abkarian M, Douguet D, Honoré E, Wengelnik K, Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion., Cell Mol Life Sci 2023 Apr; 80(5): 124.
2023
Diaz-Canestro C, Chen J, Liu Y, Han H, Wang Y, Honoré E, Lee CH, Lam KSL, Tse MA, Xu A, A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes., Cell Rep Med 2023 Feb; 4(2): 100944.
2022
Chen K, Cheong LY, Gao Y, Zhang Y, Feng T, Wang Q, Jin L, Honoré E, Lam KSL, Wang W, Hui X, Xu A, Adipose-targeted triiodothyronine therapy counteracts obesity-related metabolic complications and atherosclerosis with negligible side effects., Nat Commun 2022 Dec; 13(1): 7838.
2022
Wang S, Cao S, Arhatte M, Li D, Shi Y, Kurz S, Hu J, Wang L, Shao J, Atzberger A, Wang Z, Wang C, Zang W, Fleming I, Wettschureck N, Honoré E, Offermanns S, Author Correction: Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice., Nat Commun 2022 Jul; 13(1): 4058.
2021
Glogowska E, Arhatte M, Chatelain FC, Lesage F, Xu A, Grashoff C, Discher DE, Patel A, Honoré E, Piezo1 and Piezo2 foster mechanical gating of K2P channels., Cell Rep 2021 Nov; 37(9): 110070.
2020
Wang S, Cao S, Arhatte M, Li D, Shi Y, Kurz S, Hu J, Wang L, Shao J, Atzberger A, Wang Z, Wang C, Zang W, Fleming I, Wettschureck N, Honoré E, Offermanns S, Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice., Nat Commun 2020 May; 11(1): 2303.
2019
Douguet D, Patel A, Xu A, Vanhoutte PM, Honoré E, Piezo Ion Channels in Cardiovascular Mechanobiology., Trends Pharmacol Sci 2019 Dec; 40(12): 956-970.
2019
Douguet D, Honoré E, Mammalian Mechanoelectrical Transduction: Structure and Function of Force-Gated Ion Channels., Cell 2019 Oct; 179(2): 340-354.
2019
Douguet D, Patel A, Honoré E, Structure and function of polycystins: insights into polycystic kidney disease., Nat Rev Nephrol 2019 Jul; 15(7): 412-422.
2019
Arhatte M, Gunaratne GS, El Boustany C, Kuo IY, Moro C, Duprat F, Plaisant M, Duval H, Li D, Picard N, Couvreux A, Duranton C, Rubera I, Pagnotta S, Lacas-Gervais S, Ehrlich BE, Marchant JS, Savage AM, van Eeden FJM, Wilkinson RN, Demolombe S, Honoré E, Patel A, TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells., Nat Commun 2019 May; 10(1): 2024.
2018
Ma S, Cahalan S, LaMonte G, Grubaugh ND, Zeng W, Murthy SE, Paytas E, Gamini R, Lukacs V, Whitwam T, Loud M, Lohia R, Berry L, Khan SM, Janse CJ, Bandell M, Schmedt C, Wengelnik K, Su AI, Honore E, Winzeler EA, Andersen KG, Patapoutian A, Common PIEZO1 Allele in African Populations Causes RBC Dehydration and Attenuates Plasmodium Infection., Cell 2018 Apr; 173(2): 443-455.e12.
2016
Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C, Picard N, Kurt B, Patel A, Honoré E, Demolombe S, Piezo1-dependent regulation of urinary osmolarity., Pflugers Arch 2016 Jul; 468(7): 1197-1206.
2016
Retailleau K, Arhatte M, Demolombe S, Jodar M, Baudrie V, Offermanns S, Feng Y, Patel A, Honoré E, Duprat F, Smooth muscle filamin A is a major determinant of conduit artery structure and function at the adult stage., Pflugers Arch 2016 Jul; 468(7): 1151-1160.
2016
Retailleau K, Arhatte M, Demolombe S, Peyronnet R, Baudrie V, Jodar M, Bourreau J, Henrion D, Offermanns S, Nakamura F, Feng Y, Patel A, Duprat F, Honoré E, Arterial Myogenic Activation through Smooth Muscle Filamin A., Cell Rep 2016 Mar; 14(9): 2050-2058.
2015
Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C, Offermanns S, Feng Y, Demolombe S, Patel A, Honoré E, Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling., Cell Rep 2015 Nov; 13(6): 1161-1171.
2015
Patel A, Demolombe S, Honoré E, An alternative to force., Elife 2015 Jun; 4(): .
2015
Honoré E, Martins JR, Penton D, Patel A, Demolombe S, The Piezo Mechanosensitive Ion Channels: May the Force Be with You!, Rev Physiol Biochem Pharmacol 2015 ; 169(): 25-41.
2015
Delmas P, Coste B, Honoré E, A special issue on physiological aspects of mechanosensing., Pflugers Arch 2015 Jan; 467(1): 1-2.
2013
Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honoré E, Patel A, Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells., EMBO Rep 2013 Dec; 14(12): 1143-8.
2013
Demolombe S, Duprat F, Honoré E, Patel A, Slower Piezo1 inactivation in dehydrated hereditary stomatocytosis (xerocytosis)., Biophys J 2013 Aug; 105(4): 833-4.
2012
Nilius B, Honoré E, Sensing pressure with ion channels., Trends Neurosci 2012 Aug; 35(8): 477-86.
2012
Peyronnet R, Sharif-Naeini R, Folgering JH, Arhatte M, Jodar M, El Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters DJ, Somlo S, Sachs F, Patel A, Honoré E, Duprat F, Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels., Cell Rep 2012 Mar; 1(3): 241-50.
2011
Bagriantsev SN, Peyronnet R, Clark KA, Honoré E, Minor DL, Multiple modalities converge on a common gate to control K2P channel function., EMBO J 2011 Jul; 30(17): 3594-606.
2011
Hassane S, Claij N, Jodar M, Dedman A, Lauritzen I, Duprat F, Koenderman JS, van der Wal A, Breuning MH, de Heer E, Honore E, DeRuiter MC, Peters DJ, Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension., Lab Invest 2011 Jan; 91(1): 24-32.
2010
Patel A, Honoré E, Polycystins and renovascular mechanosensory transduction., Nat Rev Nephrol 2010 Sep; 6(9): 530-8.
2010
Patel A, Sharif-Naeini R, Folgering JR, Bichet D, Duprat F, Honoré E, Canonical TRP channels and mechanotransduction: from physiology to disease states., Pflugers Arch 2010 Aug; 460(3): 571-81.
2010
Giamarchi A, Feng S, Rodat-Despoix L, Xu Y, Bubenshchikova E, Newby LJ, Hao J, Gaudioso C, Crest M, Lupas AN, Honoré E, Williamson MP, Obara T, Ong AC, Delmas P, A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes., EMBO J 2010 Apr; 29(7): 1176-91.
2010
Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Delmas P, Patel A, Honoré E, Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels., J Mol Cell Cardiol 2010 Jan; 48(1): 83-9.
2009
Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honoré E, Polycystin-1 and -2 dosage regulates pressure sensing., Cell 2009 Oct; 139(3): 587-96.
2009
Dedman A, Sharif-Naeini R, Folgering JH, Duprat F, Patel A, Honoré E, The mechano-gated K(2P) channel TREK-1., Eur Biophys J 2009 Mar; 38(3): 293-303.
2008
Honoré E, Alternative translation initiation further increases the molecular and functional diversity of ion channels., J Physiol 2008 Dec; 586(23): 5605-6.
2008
Sharif-Naeini R, Dedman A, Folgering JH, Duprat F, Patel A, Nilius B, Honoré E, TRP channels and mechanosensory transduction: insights into the arterial myogenic response., Pflugers Arch 2008 Jun; 456(3): 529-40.
2008
Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honoré E, Revisiting TRPC1 and TRPC6 mechanosensitivity., Pflugers Arch 2008 Mar; 455(6): 1097-103.
2008
Folgering JH, Sharif-Naeini R, Dedman A, Patel A, Delmas P, Honoré E, Molecular basis of the mammalian pressure-sensitive ion channels: focus on vascular mechanotransduction., Prog Biophys Mol Biol 2008 ; 97(2-3): 180-95.
2007
Duprat F, Lauritzen I, Patel A, Honoré E, The TASK background K2P channels: chemo- and nutrient sensors., Trends Neurosci 2007 Nov; 30(11): 573-80.
2007
Chemin J, Patel AJ, Duprat F, Sachs F, Lazdunski M, Honore E, Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids., Pflugers Arch 2007 Oct; 455(1): 97-103.
2007
Honoré E, The neuronal background K2P channels: focus on TREK1., Nat Rev Neurosci 2007 Apr; 8(4): 251-61.
2007
Chemin J, Patel AJ, Delmas P, Sachs F, Lazdunski M, Honore E, Regulation of the Mechano-Gated K2P Channel TREK-1 by Membrane Phospholipids., Curr Top Membr 2007 ; 59(): 155-70.
2006
Bichet D, Peters D, Patel AJ, Delmas P, Honoré E, Cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models., Trends Cardiovasc Med 2006 Nov; 16(8): 292-8.
2006
Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P, The versatile nature of the calcium-permeable cation channel TRPP2., EMBO Rep 2006 Aug; 7(8): 787-93.
2006
Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F, Desensitization of mechano-gated K2P channels., Proc Natl Acad Sci U S A 2006 May; 103(18): 6859-64.
2005
Lauritzen I, Chemin J, Honoré E, Jodar M, Guy N, Lazdunski M, Jane Patel A, Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton., EMBO Rep 2005 Jul; 6(7): 642-8.
2005
Chemin J, Patel A, Duprat F, Zanzouri M, Lazdunski M, Honoré E, Lysophosphatidic acid-operated K+ channels., J Biol Chem 2005 Feb; 280(6): 4415-21.
2005
Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honoré E, A phospholipid sensor controls mechanogating of the K+ channel TREK-1., EMBO J 2005 Jan; 24(1): 44-53.
2004
Franks NP, Honoré E, The TREK K2P channels and their role in general anaesthesia and neuroprotection., Trends Pharmacol Sci 2004 Nov; 25(11): 601-8.
2004
Buckler K, Honoré E, Molecular strategies for studying oxygen-sensitive K+ channels., Methods Enzymol 2004 ; 381(): 233-56.
2003
Lauritzen I, Zanzouri M, Honoré E, Duprat F, Ehrengruber MU, Lazdunski M, Patel AJ, K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels., J Biol Chem 2003 Aug; 278(34): 32068-76.
2003
Patel AJ, Honore E, 2P domain K+ channels: novel pharmacological targets for volatile general anesthetics., Adv Exp Med Biol 2003 ; 536(): 9-23.
2002
Honoré E, Maingret F, Lazdunski M, Patel AJ, An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1., EMBO J 2002 Jun; 21(12): 2968-76.
2002
Maingret F, Honoré E, Lazdunski M, Patel AJ, Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K(+) channel., Biochem Biophys Res Commun 2002 Mar; 292(2): 339-46.
2002
Patel A, Honore E, The TREK two P domain K+ channels., J Physiol 2002 Mar; 539(Pt 3): 647.
2000
Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E, TREK-1 is a heat-activated background K(+) channel., EMBO J 2000 Jun; 19(11): 2483-91.
1999
Patel AJ, Lazdunski M, Honoré E, Kv2.1/Kv9.3, an ATP-dependent delayed-rectifier K+ channel in pulmonary artery myocytes., Ann N Y Acad Sci 1999 Apr; 868(): 438-41.