Se connecter
Intranet
Thème

Présentation

1              Nilius, B. & Honore, E. Sensing pressure with ion channels. Trends Neurosci 35, 477-486, doi:S0166-2236(12)00053-7 [pii]

10.1016/j.tins.2012.04.002 (2012).

2              Patel, A. & Honore, E. Polycystins and renovascular mechanosensory transduction. Nat Rev Nephrol 6, 530-538, doi:nrneph.2010.97 [pii]

10.1038/nrneph.2010.97 (2010).

3              Retailleau, K. et al. Arterial Myogenic Activation through Smooth Muscle Filamin A. Cell Rep 14, 2050-2058, doi:S2211-1247(16)30105-X [pii]

10.1016/j.celrep.2016.02.019 (2016).

4              Retailleau, K. et al. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. Cell Rep 13, 1161-1171, doi:S2211-1247(15)01114-6 [pii]

10.1016/j.celrep.2015.09.072 (2015).

5              Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265-268 (1994).

6              Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647-654 (2005).

7              Patel, A. J. et al. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17, 4283-4290 (1998).

8              Honoré, E. The neuronal background K2P channels: focus on TREK-1. Nature reviews neuroscience 8, 251-261 (2007).

9              Chemin, J. et al. Regulation of the mechano-gated K2P channel TREK-1 by membrane phospholipids. Curr Topics Membr In press (2007).

10            Chemin, J. et al. Lysophosphatidic acid-operated K+ channels. J Biol Chem 280, 4415-4421, doi:M408246200 [pii]

10.1074/jbc.M408246200 (2005).

11            Chemin, J., Patel, A., Sachs, F., Lazdunski, M. & Honoré, E. Up- and down-regulation of the mechano-gated K2P channel TREK-1 by PIP2 and other membrane phospholipids. Eur J Physiol In press (2007).

12            Chemin, J. et al. A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J 24, 44-53, doi:7600494 [pii]

10.1038/sj.emboj.7600494 (2005).

13            Dedman, A. et al. The mechano-gated K(2P) channel TREK-1. Eur Biophys J 38, 293-303, doi:10.1007/s00249-008-0318-8 (2009).

14            Franks, N. P. & Honoré, E. The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25, 601-608 (2004).

15            Honoré, E., Maingret, F., Lazdunski, M. & Patel, A. J. An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J. 21, 2968-2976. (2002).

16            Honoré, E., Patel, A. J., Chemin, J., Suchyna, T. & Sachs, F. Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci U S A 103, 6859-6864 (2006).

17            Lauritzen, I. et al. Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 6, 642-648 (2005).

18            Maingret, F., Fosset, M., Lesage, F., Lazdunski, M. & Honoré, E. TRAAK is a mammalian neuronal mechano-gated K+ channel. J. Biol. Chem. 274, 1381-1387 (1999).

19            Maingret, F., Honoré, E., Lazdunski, M. & Patel, A. J. Molecular basis of the voltage-dependent gating of TREK-1, a mechano- sensitive K+ channel. Biochem. Biophys. Res. Commun. 292, 339-346. (2002).

20            Maingret, F. et al. TREK-1 is a heat-activated background K+ channel. EMBO J. 19, 2483-2491 (2000).

21            Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honoré, E. Lysophospholipids open the two P domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10128-10133 (2000).

22            Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honoré, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26691-26696. (1999).

23            Patel, A. & Honoré, E. The TREK two P domain K+ channels. J Physiol 539, 647. (2002).

24            Patel, A. J. & Honoré, E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci. 24, 339-346. (2001).

25            Patel, A. J. & Honoré, E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology 95, 1013-1025 (2001).

26            Patel, A. J. et al. Inhalational anaesthetics activate two-pore-domain background K+ channels. Nature Neurosci. 2, 422-426 (1999).

27            Patel, A. J., Lazdunski, M. & Honoré, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol. 13, 422-428. (2001).

28            Peyronnet, R. et al. Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K(2P) Channels. Cell Rep 1, 241-250, doi:S2211-1247(12)00042-3 [pii]

10.1016/j.celrep.2012.01.006 (2012).

29            Brohawn, S. G., Su, Z. & MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111, 3614-3619, doi:1320768111 [pii]

10.1073/pnas.1320768111 (2014).

30            Brohawn, S. G., del Marmol, J. & MacKinnon, R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335, 436-441 (2012).

31            Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55-60, doi:science.1193270 [pii]

10.1126/science.1193270 (2010).

32            Ge, J. et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527, 64-69, doi:nature15247 [pii]

10.1038/nature15247 (2015).

33            Coste, B. et al. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun 6, 7223, doi:ncomms8223 [pii]

10.1038/ncomms8223 (2015).

34            Cox, C. D. et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 7, 10366, doi:ncomms10366 [pii]

10.1038/ncomms10366 (2016).

35            Syeda, R. et al. Piezo1 Channels Are Inherently Mechanosensitive. Cell Rep 17, 1739-1746, doi:S2211-1247(16)31438-3 [pii]

10.1016/j.celrep.2016.10.033 (2016).

36            Lewis, A. H. & Grandl, J. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. Elife 4, doi:10.7554/eLife.12088 (2015).

37            Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176-181 (2012).

38            Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 515, 279-282, doi:nature13701 [pii]

10.1038/nature13701 (2014).

39            Ranade, S. S. et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111, 10347-10352, doi:1409233111 [pii]

10.1073/pnas.1409233111 (2014).

40            Wang, S. et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest 126, 4527-4536, doi:87343 [pii]

10.1172/JCI87343 (2016).

41            Maksimovic, S. et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509, 617-621, doi:nature13250 [pii]

10.1038/nature13250 (2014).

42            Ranade, S. S. et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121-125, doi:nature13980 [pii]

10.1038/nature13980 (2014).

43            Woo, S. H. et al. Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18, 1756-1762, doi:nn.4162 [pii]

10.1038/nn.4162 (2015).

44            Woo, S. H. et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509, 622-626, doi:nature13251 [pii]

10.1038/nature13251 (2014).

45            Nonomura, K. et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541, 176-181, doi:nature20793 [pii]

10.1038/nature20793 (2017).

46            Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol 18, 771-783, doi:nrm.2017.92 [pii]

10.1038/nrm.2017.92 (2017).

47            Shoham, N. et al. Adipocyte stiffness increases with accumulation of lipid droplets. Biophys J 106, 1421-1431, doi:S0006-3495(14)00180-5 [pii]

10.1016/j.bpj.2014.01.045 (2014).

48            Shoham, N. & Gefen, A. Mechanotransduction in adipocytes. J Biomech 45, 1-8, doi:S0021-9290(11)00662-2 [pii]

10.1016/j.jbiomech.2011.10.023 (2012).

49            Rubin, C. T. et al. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A 104, 17879-17884, doi:0708467104 [pii]

10.1073/pnas.0708467104 (2007).

50            Shoham, N., Mor-Yossef Moldovan, L., Benayahu, D. & Gefen, A. Multiscale modeling of tissue-engineered fat: is there a deformation-driven positive feedback loop in adipogenesis? Tissue Eng Part A 21, 1354-1363, doi:10.1089/ten.TEA.2014.0505 (2015).

51            Wang, S. et al. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat Commun 11, 2303, doi:10.1038/s41467-020-16026-w

10.1038/s41467-020-16026-w [pii] (2020).

52            Tuder, R. M. et al. Development and pathology of pulmonary hypertension. J Am Coll Cardiol 54, S3-9, doi:S0735-1097(09)01212-1 [pii]

10.1016/j.jacc.2009.04.009 (2009).

53            Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118, 2372-2379, doi:10.1172/JCI33452 (2008).

54            Stenmark, K. R., Meyrick, B., Galie, N., Mooi, W. J. & McMurtry, I. F. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297, L1013-1032, doi:00217.2009 [pii]

10.1152/ajplung.00217.2009 (2009).

55            Soubrier, F. et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 62, D13-21, doi:S0735-1097(13)05878-6 [pii]

10.1016/j.jacc.2013.10.035 (2013).

56            Birukov, K. G. Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal 11, 1651-1667, doi:10.1089/ars.2008.2390

10.1089/ARS.2008.2390 [pii] (2009).

57            Dick, A. S. et al. Cyclic stretch stimulates nitric oxide synthase-1-dependent peroxynitrite formation by neonatal rat pulmonary artery smooth muscle. Free Radic Biol Med 61, 310-319, doi:S0891-5849(13)00167-6 [pii]

10.1016/j.freeradbiomed.2013.04.027 (2013).

58            Bjorkegren, J. L. M. & Lusis, A. J. Atherosclerosis: Recent developments. Cell 185, 1630-1645, doi:10.1016/j.cell.2022.04.004 (2022).

59            Libby, P. The changing landscape of atherosclerosis. Nature 592, 524-533, doi:10.1038/s41586-021-03392-8 (2021).

60            Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 7, 131, doi:10.1038/s41392-022-00955-7 (2022).

61            Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 27, 165-197, doi:10.1146/annurev.immunol.021908.132620 (2009).

62            Song, P. et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health 8, e721-e729, doi:10.1016/S2214-109X(20)30117-0 (2020).

63            Bobryshev, Y. V., Ivanova, E. A., Chistiakov, D. A., Nikiforov, N. G. & Orekhov, A. N. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int 2016, 9582430, doi:10.1155/2016/9582430 (2016).

64            Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13, 709-721, doi:10.1038/nri3520 (2013).

65            Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341-355, doi:10.1016/j.cell.2011.04.005 (2011).

66            Boyle, J. J. Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol 3, 63-68, doi:10.2174/1570161052773861 (2005).

67            Mestas, J. & Ley, K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med 18, 228-232, doi:10.1016/j.tcm.2008.11.004 (2008).

68            Gui, Y., Zheng, H. & Cao, R. Y. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 9, 845942, doi:10.3389/fcvm.2022.845942 (2022).

69            Linton, M. F. et al. in Endotext   (eds K. R. Feingold et al.)  (2000).

70            Yu, X. H., Fu, Y. C., Zhang, D. W., Yin, K. & Tang, C. K. Foam cells in atherosclerosis. Clin Chim Acta 424, 245-252, doi:10.1016/j.cca.2013.06.006 (2013).

71            Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ Res 114, 1852-1866, doi:10.1161/CIRCRESAHA.114.302721 (2014).

72            Tabas, I. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal 11, 2333-2339, doi:10.1089/ars.2009.2469 (2009).

73            Shah, P. K. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41, 15S-22S, doi:10.1016/s0735-1097(02)02834-6 (2003).

74            Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905-1919, doi:10.1161/CIRCULATIONAHA.111.066589 (2012).

75            Barrett, T. J. Macrophages in Atherosclerosis Regression. Arterioscler Thromb Vasc Biol 40, 20-33, doi:10.1161/ATVBAHA.119.312802 (2020).

76            Chiu, J. J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91, 327-387, doi:91/1/327 [pii]

10.1152/physrev.00047.2009 (2011).

77            Davies, P. F., Spaan, J. A. & Krams, R. Shear stress biology of the endothelium. Ann Biomed Eng 33, 1714-1718 (2005).

78            Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10, 53-62 (2009).

79            Tamargo, I. A., Baek, K. I., Kim, Y., Park, C. & Jo, H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 20, 738-753, doi:10.1038/s41569-023-00883-1 (2023).

80            Cunningham, K. S. & Gotlieb, A. I. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85, 9-23, doi:10.1038/labinvest.3700215 (2005).

81            Malek, A. M., Alper, S. L. & Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282, 2035-2042, doi:10.1001/jama.282.21.2035 (1999).

82            Wentzel, J. J. et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res 96, 234-243, doi:10.1093/cvr/cvs217 (2012).

83            Lee, M., Du, H., Winer, D. A., Clemente-Casares, X. & Tsai, S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol 10, 1044729, doi:10.3389/fcell.2022.1044729 (2022).

84            Bae, C., Gnanasambandam, R., Nicolai, C., Sachs, F. & Gottlieb, P. A. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc Natl Acad Sci U S A 110, E1162-1168, doi:1219777110 [pii]

10.1073/pnas.1219777110 (2013).

85            Zarychanski, R. et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120, 1908-1915, doi:blood-2012-04-422253 [pii]

10.1182/blood-2012-04-422253 (2012).

86            Albuisson, J. et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun 4, 1884, doi:ncomms2899 [pii]

10.1038/ncomms2899 (2013).

87            Tiffert, T. et al. The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. Blood 105, 4853-4860, doi:S0006-4971(20)53424-1 [pii]

10.1182/blood-2004-12-4948 (2005).

88            Ma, S. et al. Common PIEZO1 Allele in African Populations Causes RBC Dehydration and Attenuates Plasmodium Infection. Cell 173, 443-455 e412, doi:S0092-8674(18)30224-1 [pii]

10.1016/j.cell.2018.02.047 (2018).

89            Lohia, R. et al. Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion. Cell Mol Life Sci 80, 124, doi:10.1007/s00018-023-04773-0 [pii]

4773 [pii]

10.1007/s00018-023-04773-0 (2023).